High order Newton-penalty algorithms ?
نویسنده
چکیده
Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step. We explore here higher order extrapolations, thus higher order Newton-like methods. We first consider high order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high order extrapolation steps.
منابع مشابه
Numerical experiments in semi-infinite programming
A quasi-Newton algorithm for semi-infinite programming using an Leo exact penalty function is described, and numerical results are presented. Comparisons with three Newton algorithms and one other quasi-Newton algorithm show that the algorithm is very promising in practice. AMS classifications: 65K05,90C30.
متن کاملPenalty/barrier Path-following in Linearly Constrained Optimization
In the present paper rather general penalty/barrier path-following methods (e.g. with p-th power penalties, logarithmic barriers, SUMT, exponential penalties) applied to linearly constrained convex optimization problems are studied. In particular, unlike in previous studies [1, 11], here simultaneously different types of penalty/barrier embeddings are included. Together with the assumed 2nd ord...
متن کاملA Gauss-Newton Approach for Solving Constrained Optimization Problems Using Differentiable Exact Penalties
We propose a Gauss-Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by André and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of the KKT...
متن کاملExterior point algorithms for nearest points and convex quadratic programs
We consider the problem of finding the nearest point (by Euclidean distance) in a simplicial cone to a given point, and develop an exterior penalty algorithm for it. Each iteration in the algorithm consists of a single Newton step following a reduction in the value of the penalty parameter. Proofs of convergence of the algorithm are given. Various other versions of exterior penalty algorithms f...
متن کاملVariable Selection using MM Algorithms.
Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the pe...
متن کامل